
s

Setting Up a 2-Node Hadoop Cluster and Kafka for

Distributed Data Collection and Web Log Analysis

Japhari Mbaru

Table of Contents

Introduction. ...3

Weblog Analysis. ...3

Technology Stack. ...3

Hadoop Distributed File System. ..4

Prerequisites ..4

Hardware Requirements ..4

Configure Hostname Resolution ...8

Technology Stack:...9

Software Requirements: ..9

Architecture Overview ..11

Setting Up a 2-Node Hadoop Cluster ...12

Installing Hadoop Version 3.4.0 (Master and Workers) ...12

Configuring Hadoop ...12

Setting Up Kafka for Distributed Data Collection ...18

Installing Zookeeper ...18

Installing Kafka ...18

Configuring Kafka ..19

Kafka Commands ..21

Apache Hive ..21

Setting Up Hive Configuration Files ..22

Collecting Distributed Data Using Kafka ..26

Running Apache Kafka ...27

Writing MapReduce Code for Web Log Analysis ..30

Running the MapReduce Job ..31

Connecting Data to Hive ..35

Setting Up a Dashboard for Data Visualization ..37

Apache Superset ..37

Dashboard ...41

Summary of the Graphs ..42

Conclusion ..48

Key Achievements ..48

Benefits ...48

References ...49

Introduction.
This report outlines the steps to set up a 2-node Hadoop cluster and Kafka for collecting

distributed data from multiple nodes, such as web logs. Additionally, it provides a guide to

writing a MapReduce code for web log analysis and setting up a dashboard for data

visualization. This setup ensures efficient data processing and real-time insights into the

collected data.

Weblog Analysis.
Weblog analysis is a crucial process for understanding user behaviors and improving web

services. It involves examining the log files generated by web servers to gain insights into user

interactions with a website [1]. These log files contain valuable information such as user IP

addresses, timestamps, requested URLs, HTTP status codes, and the amount of data

transferred. By analyzing this data, businesses can optimize their websites, improve user

experience, and enhance their marketing strategies.

Technology Stack.
In this project, the following technology stack is utilized:

1. Hadoop.

• Version - 3.4.0

• Components - HDFS (Hadoop Distributed File System), YARN (Yet Another

Resource Negotiator), MapReduce

• Purpose - Distributed storage and processing of large datasets across a cluster

of machines.

2. Apache Kafka.

• Version - Latest stable release

• Components - Kafka brokers, Kafka topics

• Purpose - Distributed streaming platform for building real-time data pipelines

and streaming applications.

3. Apache Zookeeper.

• Purpose - Centralized service for maintaining configuration information,

naming, providing distributed synchronization, and providing group services.

4. Java Development Kit (JDK).

5. Apache Hive.

• Purpose – To allow querying and managing large datasets residing in

distributed storage.

6. Java Development Kit (JDK).

7.

• Version - 8 or later.

• Purpose - Required for running Hadoop and Kafka.

8. Ubuntu Linux.

• Version - 24.04 or later.

• Purpose - Operating system for virtual machines.

9. VMware Fusion.

• Purpose - Virtualization software to run multiple virtual machines on Mac OS.

10. SSH.

• Purpose - Secure Shell (SSH) protocol for secure network services between

nodes.

11. Dashboard Tool.

• Visualization tool.

• Purpose - For data visualization and dashboard creation to monitor and

analyze data.

Hadoop Distributed File System.

Distributed file system (DFS) is a transformation of traditional file systems to perform file

read, write and execution of petabyte or larger-sized datasets with high-velocity and different

structures. In order to process these large amounts of data in an inexpensive and efficient

way, Hadoop Distributed File System (HDFS) is used and designed to scale up from a single

server to hundreds of servers, with a very high degree of fault tolerance [2]

Prerequisites

Hardware Requirements

• Four Virtual machines with Linux (Ubuntu) installed with at least 4GB RAM and 25

GB of disk spaces.

• Stable network connection between the nodes.

Configure all the Virtual Machine with static IP addresses for all the servers

Mac operating System

• Open VMware Fusion Start VMware Fusion on your Mac.

• Navigate to the Virtual Machine Settings.

• Select the virtual machine you want to configure.

• Go to Virtual Machine > Settings from the menu bar.

• Configure the Network Adapter.

• Click on Network Adapter in the settings menu.

Ensure the network connection is set to Share with my Mac (NAT).

This setting allows your virtual machine to use the Mac’s network

connection, sharing the same IP address but maintaining unique

network ports.

Advanced NAT Settings.

(To ensure that IP Address will not change on different Networks especially by connecting to

different Wi-Fi.

• Open configuration file directly. This file is typically located at

/Library/Preferences/VMware Fusion/vmnet8/nat.conf on Mac.

• Edit the dhcpd.conf on Mac and comment the host vmnet8

• Edit the nat.conf on Mac and edit NAT Gateway address and VM net host IP

Address which will be used in the Virtual Machines.

• Restart the Network Services and Open VM to configure
sudo /Applications/VMware\ Fusion.app/Contents/Library/vmnet-

cli --stop

sudo /Applications/VMware\ Fusion.app/Contents/Library/vmnet-

cli –start

VM Network Configuration

• Open VMware Fusion Start VMware Fusion on your Mac and Start all VM.

• SSH to All the VM and change Net plan and restart all the server

• Change the Configuration to match the Gateway

Figure 1 Hadoop Master Netplan

Figure 2 Worker 1 Netplan

Figure 3 Worker 2 Netplan

Figure 4 Kafka Server Netplan

• Apply the configurations and restart server to use the configured IP Addresses.

• Ping google.com and other VMs to test if the configuration is working

Configure Hostname Resolution

Hostname IP Address

masternode 176.16.211.100

workernode1 172.16.211.101

Workernode2 172.16.211.102

• Edit the Hostname on all Nodes to match their corresponding IP Addresses.

• Test to ping hostname all the nodes

Technology Stack:

Software Requirements:

• Java Development Kit (JDK) installed on three machines.

• SSH setup on both machines for password-less login.

1. Create a dedicated user for Hadoop on all nodes

2. On the Master Node switch user to hdoop and generate SSH key

3. Add the generated public key to the master server authorized keys.

4. Copy Keys to both workers – worker1 and worker2.

Architecture Overview
The architecture consists of a 2-node Hadoop cluster and a Kafka setup to collect distributed

data. Data is ingested into Kafka from multiple sources and then processed using Hadoop's

MapReduce. A dashboard tool is used to visualize the processed data

Weblog Analysis Architecture

Figure 5 Weblog Analysis Architecture

Master Worker Architecture (2 Nodes)

Figure 6 Master Worker Architecture

Setting Up a 2-Node Hadoop Cluster

Installing Hadoop Version 3.4.0 (Master and Workers)

• Download Hadoop from the official website (version 3.4.0).

• Extract the Hadoop tar file on both master and worker nodes

• Set Environment Varriables

• Verify Hadoop Installation

Configuring Hadoop

• Configuring Master Node

• Edit hadoop-env.sh – Set `JAVA_HOME` variable

• Configure core-site.xml - Set the default filesystem to HDFS and specify the

master node.

• Configure hdfs-site.xml - Set the replication factor and specify the namenode and

datanode directories.

• Edit workers file on the master node and define the data nodes.

• Copy all configurations from the master node to both data nodes

• Configure mapred-site.xml - Set the MapReduce framework to YARN (Master

Node).

• Configure yarn-site.xml - Specify the ResourceManager hostname (Master

Node).

Starting the Hadoop Cluster

• Format the HDFS on the master node.

On the Master format the Hadoop namenode.

• Start DFS Service and Yarn

• Verify status of Hadoop cluster (Master Node)

• Verify status of Hadoop (Worker1).

• Verify status of Hadoop (Worker2).

• Access Hadoop

Setting Up Kafka for Distributed Data Collection

Installing Zookeeper

• SSH to Kafka Server.

Installing Kafka

• Download the latest version of Kafka from the official website.

• Extract Kafka.

Configuring Kafka

• Set Environment Variables - Add Kafka paths to.bashrc on both nodes.

• Creating a system service file to manage zookeeper “zookeeper.service”

• Reload the system service

• Creating a system service file to manage zookeeper “kafka.service”

• Checking Status (Zookeeper and Kafka)

Kafka Commands

• Creating Kafka Topics

• List of the Kafka Topics

Apache Hive

• Download Apache Hive from apache hive website and ssh to Hadoop server and

extract hive files.

• Move the files in /usr/local folder and configure environment in the bashrc script

and update the script with the following configurations

• Ensure that dfs and yarn are running and then configure hive to work with Hadoop

Setting Up Hive Configuration Files

• Create or edit the hive-site.xml file

• Edit hive-site.xml

• Replace all occurrences of ${system:java.io.tmpdir} to /tmp/hive

• Create Hive Ware House Directory

• Add permission for the directory to be accessed.

• Create a temporary tmp directory

• Initialize the Hive Metastore

• To re-initialize the Hive remember to Delete Metastore Database Directory

• Start Hive

Collecting Distributed Data Using Kafka
• Producing Data to Kafka

A Kafka producer sends records to a Kafka topic

Consuming Data from Kafka

A Kafka consumer reads records from a Kafka topic.

Running Apache Kafka

• Activate Python environment .

• Running producer to send logs to kafka

• Output of the process

• Running Consumer to send data to HDFS

• Results of the process

• HDFS Results

Writing MapReduce Code for Web Log Analysis
• Understanding Web Log Data

Web log data typically includes information such as IP addresses, timestamps, request

methods, URLs, response codes, and user agents. Analyzing this data can provide insights

into user behavior, traffic patterns, and potential issues.

• Writing the Mapper Class.

Create a Mapper class to parse web log entries. This class will extract relevant fields from

each log entry and emit key-value pairs for further processing.

LogMapper.java

The LogMapper class processes each line of the web log, extracts the URL, and outputs

key-value pairs.

• Writing the Reducer Class

Create a Reducer class to count URL hits. This class will sum up the counts for each URL

emitted by the Mapper.

LogReducer.java

The LogReducer class counts the occurrences of each URL.

WebLogAnalysis.java

The WebLogAnalysis class configures and runs the Hadoop job.

Running the MapReduce Job

• Create a JAR file and import to the server to run mapReduce job.

• View the Output

• Results of the Mapreduce

Connecting Data to Hive
• Creating Hive Table

• Starting Hive shell

• Create the table.

• Load the Data.

• Count the Number of Requests by Method.

Setting Up a Dashboard for Data Visualization
• Installing and Configuring a Dashboard Tool

Apache Superset

Is an open-source data visualization tool designed to make data exploration and visualization

for data analyst and scientist

• Install Apache Superset by using Docker

• Start docker

• Accessing the contained to create user for the Apache Superset

• Accessing the Superset in the browser through port 8080

• Login in the Superset by using default credential username : admin password : admin

• Integrating Superset with Hadoop

To integrate Hive and Hadoop modify “core-site.xml” to allow user impersonation.

Connecting Hive Database in the Hive.

Login in the Apache Superset.

• Go to Sources -> Databases and click on + Database.

• Select Apache Hive and set url to hive://@172.16.211.100:10000/default

• Click Connect and if its successfully, go to the Datasets select database schema and

table to create a dataset.

• After creating dataset, the list of the Dataset will show the api_logs dataset.

Dashboard

The Log Analysis Dashboard is designed to provide a comprehensive overview of web server

log data, enabling the identification and visualization of anomalies and normal request patterns.

By analysing key metrics such as HTTP status codes, methods, URLs, IP addresses, and

response sizes, the dashboard aims to enhance the understanding of web traffic behaviour and

potential issues. This document summarizes the various graphs presented in the dashboard,

each tailored to highlight different aspects of the log data.

Key Features of the Dashboard

1. Anomalies Detection.

 The dashboard identifies and visualizes anomalies in the log data, which are

characterized by unusual HTTP status codes, large response sizes, or high-

frequency requests.

 Anomalies are critical as they can indicate potential security threats, server

issues, or unusual user behavior.

2. Normal Requests Analysis:

 The dashboard also provides insights into the normal request patterns, helping

to establish baselines for regular web traffic.

 This analysis is essential for understanding typical user interactions and server

performance under normal conditions.

3. Time Series Analysis:

 A time series graph is included to show the trend of log entries over time,

aiding in the detection of patterns or anomalies that evolve.

Summary of the Graphs

Each graph in the dashboard serves a specific purpose in analyzing the log data:

1. Anomalies Section:

 Status Code Distribution (Anomalies). A histogram showing the distribution

of HTTP status codes among anomalies, helping to identify common error

types.

 HTTP Method Distribution (Anomalies). A histogram displaying the

distribution of HTTP methods for the anomalies, indicating which methods are

prone to issues.

 Top 20 URL Distribution (Anomalies). A bar chart depicting the most

frequently accessed URLs among anomalies, highlighting problematic

endpoints.

 Response Size Distribution (Anomalies). A histogram illustrating the

distribution of response sizes for anomalies, which can reveal unusual data

transfers.

 Top 20 Anomalies per IP Address. A bar chart showing the IP addresses

most frequently associated with anomalies, potentially indicating sources of

attacks or issues.

 Anomaly Status Code Distribution (Pie Chart). A pie chart summarizing

the distribution of HTTP status codes among anomalies, providing a quick

overview of error types.

 IP vs HTTP Method by Status Code (Anomalies). A scatter plot showing

the relationship between IP addresses and HTTP methods for anomalies,

offering insights into the nature of issues based on IP and method

combinations.

2. Normal Requests Section:

 Status Code Distribution (Normal Requests): A histogram showing the

distribution of HTTP status codes among normal requests, helping to

understand the typical success and error rates.

 HTTP Method Distribution (Normal Requests): A histogram displaying the

distribution of HTTP methods for normal requests, indicating common user

actions.

 Top 20 URL Distribution (Normal Requests): A bar chart depicting the

most frequently accessed URLs among normal requests, highlighting popular

endpoints.

 Response Size Distribution (Normal Requests): A histogram illustrating the

distribution of response sizes for normal requests, showing the typical data

transfer sizes.

 Top 20 Normal Requests per IP Address: A bar chart showing the IP

addresses most frequently associated with normal requests, indicating active

users or clients.

 Normal Status Code Distribution (Pie Chart): A pie chart summarizing the

distribution of HTTP status codes among normal requests, providing an

overview of request outcomes.

 IP vs HTTP Method by Status Code (Normal Requests): A scatter plot

showing the relationship between IP addresses and HTTP methods for normal

requests, offering insights into typical interactions based on IP and method

combinations.

3. Time Series Analysis:

 Time Series of Log Entries: A line graph showing the size of log entries over

time, helping to detect trends or periodic patterns in web traffic.

Conclusion

In conclusion, this report provided a comprehensive guide on setting up a 2-node Hadoop

cluster and configuring Kafka to collect distributed data from multiple nodes, such as web

logs. By implementing MapReduce for web log analysis and setting up a data visualization

dashboard, the system ensures efficient data processing and real-time insights.

Key Achievements

1. Hadoop Cluster Setup.

 Successfully established a 2-node Hadoop cluster, enabling scalable and

distributed data storage and processing.

2. Kafka Configuration.

 Configured Kafka for real-time data collection from multiple nodes,

facilitating efficient ingestion and handling of web logs.

3. MapReduce Implementation.

 Developed and deployed MapReduce code for analyzing web log data,

allowing for detailed and distributed data processing.

4. Data Visualization Dashboard.

 Created a comprehensive dashboard for visualizing web log analysis results,

providing valuable insights into web traffic and potential anomalies.

Benefits

• Enhanced Data Processing. The combination of Hadoop and Kafka enables the

handling of large-scale, distributed data efficiently.

• Real-Time Insights. The dashboard offers real-time visibility into the collected data,

highlighting anomalies and normal patterns for proactive decision-making.

• Scalability. The 2-node cluster setup ensures that the system can scale as data volume

grows, maintaining performance and reliability.

References

[1] S. Bhuvaneswari and T. Anand, "A Comparative Study of Different Log Analyzer Tools

to Analyze User Behaviors," nternational Journal on Recent and Innovation Trends in

Computing and Communication, vol. 3, pp. 2997-3002, 2015.

[2] M. S. Hossain, K. B. Pratik and A. Rahman, "Develop a Model to Secure and Optimize

Distributed File Systems for ISP Log Management," Journal of Financial Services

Marketing, pp. 1-6, 2023.

	Introduction.
	Weblog Analysis.
	Technology Stack.
	Hadoop Distributed File System.

	Prerequisites
	Hardware Requirements
	Configure Hostname Resolution
	Technology Stack:
	Software Requirements:

	Architecture Overview
	Setting Up a 2-Node Hadoop Cluster
	Installing Hadoop Version 3.4.0 (Master and Workers)
	Configuring Hadoop

	Setting Up Kafka for Distributed Data Collection
	Installing Zookeeper
	Installing Kafka
	Configuring Kafka
	Kafka Commands
	Apache Hive
	Setting Up Hive Configuration Files

	Collecting Distributed Data Using Kafka
	Running Apache Kafka

	Writing MapReduce Code for Web Log Analysis
	Running the MapReduce Job

	Connecting Data to Hive
	Setting Up a Dashboard for Data Visualization
	Apache Superset
	Dashboard
	Summary of the Graphs

	Conclusion
	Key Achievements
	Benefits

	References

